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An Ro-independent electronic repulsion matrix is constructed, replacing the Ro-dependent 
Hamiltonian matrix (R  o is the density matrix). A non-SCF theory is developed to solve the 
eigenequation without using an iterative procedure. Three methods are proposed to solve for 
the eigenvectors and eigenvalucs. Illustrative calculations are reported comparing the non- 
SCF and SCF theories. The calculated results are as expected: the ground state energies are 
nearly unchanged while the orbital energies are nearer to the experimental results. Other 
physical properties and spectrM quantities are also compared. I t  is found that the ZDO assump- 
tion is applicable in  the non-SCF theory if it is applicable in SCF theory. 

Eine Ro-unabh~ngige Elektronenabstoi3tmgsmatrix wird eingefiihr~, die die Ro-abhi~ngige 
Hamiltonmatrix ersetzt (R  o ist die Dichtematrix). Zur LSsung der Eigenwertgleichung ohne 
iterative 1)rozeduren wird eine sog. Nicht-SCF-Theorie aufgestellt. An Beispielen werden die 
Ergebnisse yon SCF- und Nicht-SCF-Reehnungen verglichen; dabei erweisen sich die Energien 
des Grundzustandes als nahezu unveri~ndert, w~hrend die Energien der Orbitale n~her bei den 
experimentellen Werten liegen. Die ,,zero-differential-overlap"-N~herung ist immer dann in 
der neuen Theorie anwendbar, wenn sie in der SCF-Theorie anwendbar ist. 

Une matrice de r~pulsion ~lectronique ind6pendante de Ro est construite, remplapant la 
matrice hamiltonienne d6pendant de Ro (Ro matriee de densit6). Une th6orie non SCF est 
d~velopp6e afin de r6soudre l'~quation aux valeurs propres sans itdrations. Trois m6thodes de 
r~solution du problSme aux valeurs propres sont propos6es. Des calculs fllustrent la comparai- 
son entre les th6ories SCF et non SCF. Les r6sultats des calculs sont comme pr6vus: l'6nergie 
de l'6tat fondamental varie peu alors que les 6nergies orbitales sont plus proches des r~sultats 
exp6rimentaux. D'autres propri~t6s physiques ainsi que des grandeurs spectrales sont compa- 
rdes. On trouve que l'approximation du recouvrement diff~rentiel nul est applicable dans la 
th6orie non SCF si elle est applicable dans la th~orie SCF. 

I. Introduction 

The e igenvalue  p rob lem has  long been  the  mos t  i m p o r t a n t  top ic  in q u a n t u m  
mechanics .  I n  molecu la r  calculat ions,  ~OOTHA~:~'S S C F - L C A O  m e t h o d  [1] seems 
to  be t he  bes t  k n o w n  method .  However ,  since the  H a m i l t o n i a n  m a t r i x  i t se l f  is a 
func t ion  of  dens i ty  m a t r i x  R ~ (or e igenvector  Co), t he  successive i t e ra t ions  to  
improve  the  R o a n d  thus  the  H a m i l t o n i a n  m a t r i x  are unavo idab le  in solving the  
e igenequa t ion  /7 Co = S C ~ E ~ This s i tua t ion  can  be improved .  Since ind iv idua l  
orb i ta l s  have  no real  significance, all phys ica l ly  r e l evan t  in fo rmat ion  being ob- 
t a i n e d  b y  s u m m a t i o n  over  all  occupied orbi ta ls ,  McWEn~Y was able to  use the  
so-cMled dens i ty  m a t r i x  m e t h o d  [2] wi thou t  successively solving the  eigenequa-  
t ion.  I n  his me thod ,  t he  dens i t y  ma t r ix ,  which de te rmines  the  behav iou r  of  a 
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system without depending on the form of the individual orbitals, is iterated by 
the steepest descent method, but successive iteration of the density matrix is still 
unavoidable. In  the present paper, a new electronic repulsion matrix, which is 
R o - i n d e p e n d e n t ,  is introduced to replace the Ro-dependent Hamfltonian matrix 
Iz(Ro), so that  the successive solution of the eigenequation can be completely 
avoided. The construction of this new N O - i n d e p e n d e n t  matrix is based on the 
following arguments : 

1. In  the variation method, it is well known that, in the LCAO approximation, 
the more and more basis atomic orbitals used, the lower the energy can be ob- 
tained. In  other words, the more dummy virtual molecular orbitals introduced, 
the greater the accuracy achieved. (Note that  ff there is a 2n electron system of n 
doubly occupied orbitals with m basis atomic orbitals, then the eigenequation 
always gives m eigenvectors and (m-n) of them are unoccupied dummy orbitals.) 
Therefore, the dummy unoccupied MO's seem to be important in the variation 
method. 

2. I f  we define G O as those n molecular orbitals with lowest energies, and C u as 
those (m-~) orbitals of higher energies, then although the virtual MO's G u do not 
contain an electron, every electron can arbitrarily be put into any MO, no matter 
whether it is a C o or a C u. Consequently, all the energy levels could be minimized 
but not necessarily restricted to those of lowest energy levels only, provided that  
all C ~ are regarded as dummy orbitals when physically relevant quantities are 
considered. 

3. The introduction of these dummy orbitals C u does not change the original 
occupied molecular state. Furthermore, the R~ matrix K is obtained 

from the minimization of s = ~ el, where the e~ are orbital energies. Such a mini- 
i = 1  

mization is simply a procedure of optimization of a11 the orbitals C o and C u but 
not  a minimization of a new  molecular state with all its m orbitals being occupied. 
This point can easily be found from the difference between e and the energy of such 
a new molecular state. 

II. Theory 

Let us express the n occupied one electron molecular orbitals by the row 
matrix 0 = (r162 Cn), and the non-orthogonal basis atomic orbitals by the 
row matrix 5 P = (Szl~f~ . - .  5Zm), m > n. Then the LCAO expression of the 
MO's can be shown by 

0 = ~ c ~  ( l )  

where C O is the m • n coefficient matrix. Then I~OOTKAA~'S SCF method solves 
the eigenequation 

F C o = S C o E o (2) 
where 

S = 5 pc 5 ~, F =  5 P r  f = H + G .  (3) 

H is the nuclear field matrix while G is the electronic repulsion matrix; a n d f  is the 
one electron Hamfltonian operator such that  

F~ = H.~ + Y R~ [2 <~v 1~> - < ~  l~v>] (4) 

4 Theoret .  chim. Acta  (Berl.) Vol. 7 
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where 

and 

14o> =  o(2)  v(2) 

f t  

i = l  

is the matr ix  element of the density matr ix  

R ~ = C ~ C ~ �9 (5) 
Since F is a Re-dependent matrix,  a self-consistent process as shown in the 

following diagram has to be used to solve the eigenequation (2) : 

guess C ~ ~ R ~ ~ F ( R  o) ~ C ~ . 

However, the R o dependent ma t r ix /7  can be replaced by  a new Re-independent 
interelectronie repulsion matr ix  K so tha t  the successive iterative process is 
avoided. In  order to derive the Re-independent matr ix  K, the row matr ix  ~b 
should be extended to have the same length as 5f, i.e., besides the n occupied 
MO's, 0 should also consist of the (m-n) virtual unoccupied MO's. In  fact, 
ROOTTrAA~'S SCF method always produces ( m - n )  dummy orbitals [1]. Conse- 
quently, 

r = S f C (6) 
with 

C = [Co C ~3 (7) 

where C u is the m • (mAn) coefficient matr ix  for the ( m - n )  virtual unoccupied 
MO's. And C is now a m x m square coefficient matrix. The eigenequation then 
becomes 

F C = S C E  (8) 

where F and S have already been defined in Eq. (3), and 

[.E:i___o__] 
E = L o i .E"J O) 

where the superscripts o and u designate " o c c u p i e d "  and "vir tual  unoccupied" 
respectively. These notations will be used throught this paper. 

Now, the condition of orthonormMization requires tha t  : 

5f '  = ~ A ,  C '  = A - *  C (10) 
o r  

5 f  = ~ ' A  -~, C = A C '  (ii) 

where A is a m • m non-singular matr ix;  it can be an upper triangular matr ix  [3] 
(Gram-Schmidt orthogonallzation process), a 8 -1/, matr ix  [4] (Symmetric ortho- 
gonalization process), or a matr ix  product Y D -1/2 where Y and D are eigenvector 
matr ix  and eigenvalue matr ix  of S respectively [5] (Canonical orthogonalization 
process). Left multiplication of the eigenequation (8) by  .4r then gives 

Ar F A A - x  C = A t  S .4 A - ~  C E 
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o r  

F '  C '  = S '  C'  E (12) 
where 

P'  = .dr 17 .4 = 9o,t f 9O, (t3) 
and 

$ '  = At $ `4 = 9o't 9O' = lm �9 (14) 

I t  should be noted tha t  C '  is a square coefficient matr ix  of the orthonormal basic 
set, and is a unitary matr ix  such tha t  

C'  C ' t  = C ' t  C '  = It,, ( i5 )  

and matr ix  elements of F '  are given by  

F,;, = H~ + 2 R~ [2 <(A, t 9or) (9O As) I~> - <(A~ S ~ ~ [~(9O A~)>] 

where .dr is the r*~ column of .4 matr ix;  2, o,/~ and ~ denote non-orthonormal basis 
atomic orbitals whereas r, s, t and u denote orthonormal basis atomic orbitals, 
and His = .dr r H .ds, where H is the nuclear field matr ix  of the non-orthonormal 
basis atomic orbitals. 

I t  is equally valid ff all the 9O~ and 9 ~ involved are replaced by  9O; and 9ou, 
and also R ~  be replaced b y / ~ u  which is defined in terms of the coefficients of the 
orthonormalized basis set instead of the coefficients of the non-orthonormal basis 
set. 

Left multiplying Eq. (12) by  C 't gives 

C ' t  F C '  = H .  (17) 

With the aid of Eq. (15), the energy sum of the individual one electron molecular 
orbitals can then be obtained directly from above equations : 

= Tr {B} = Tr {C ' t  F '  C'} = Tr  {F '  C '  C 't} = Tr {F'} 
m 

= Tr {.dt H.4} -F 2 2 ~ A,r A*, R ~ [2 </~ [ ~ )  -- </~r [ 2~)] (iS) 

= Tr {At H.4} -F Tr { R  o K}, 
where the matr ix  elements of K are defined by  

g ~  = ~ [2 <(A~ 9ot) (9O `dr> [ 2ct) -- <(`dt 9Or) ~ ]2 (9O `dr)] 
r 

= 2 T , ,  [2 <#v I - < ~  I X >l (~9) 

with 
m 

T,~ = ~ A~r A*r. (20) 

Since the introduction of the virtual molecular orbitals does not change the 
nuclear field matr ix  H and the electronic repulsion matr ix  G(Ro), and since every 
electron can arbitrarily be put  into any one molecular orbital, no mat te r  whether 
it is C o or C u, we could require tha t  all the energy levels arc to be minimized not 
only those of lowest energy levels. Therefore, the minimization of s is equally 
valid as the minimization of the ground state energy Tr [Ro(2t t-F G)]. 

4* 
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I t  should be emphasized  t h a t  since the  C u are only d u m m y  orbitals,  thei r  
in t roduct ion  does not  change the  original occupied molecular  state.  Fur the rmore ,  
the  minimiza t ion  of  s is just  a procedure  for opt imizing all the  orbi ta l  energies of  
C o and C u. This is not  the  minimiza t ion  of a new molecular  s ta te  wi th  all its m 
orbitals  occupied;  such a molecular  s ta te  would have  the  energy 

m 

/ = 1  r,s i , j f l r ,  s,p,q 

if  all C O and C u are doubly  occupied, or 

~/~ m 

Z Z c* + Z Z G* G* [<pq ]rs> - <p8 l q>] 
i = l  r,s i , j= 1 r,s,p,q 

if  all C O and C u are singly occupied and all the electrons have  the same spin. I t  is 
obvious t h a t  above energies are different f rom s, where s can also be expressed as 

~= ~ ~ Cr*CsiHsr+ ~ ~ ~ C*C*Cr~Omy[2<pq[rs)-<ps[rq>]. 
i = l  r,s i = l  j=l r,s,p,q 

I f  the var ia t ion me thod  in Lagrange  mult ipl ier  form [6] is applied to  mini- 
mize the energy sum e subject  to  the  o r thonormal i ty  condit ion 

C ~162 S C  ~ = In  (21) 
then  

3 e 2 3 Tr [(Co? S C o -  L) e~] : 0 ,  

and it follows t h a t  

( K  Co)~l - -  ( S  C O t ~  = 0 

where t ~ is the Lagrange  mult ipl ier  ma t r i x  and s ~ = 2 t  ~ Therefore,  the following 
new eigenequat ion is der ived:  

K C o = S C o e. ~ . (23) 

Al though t ~ is not  diagonal,  a un i t a ry  t r ans fo rmat ion  

C ~  V ~  ~  V ~  ~  ~ (24) 

where B o is an n x n un i t a ry  ma t r i x  and  V o is the new (m • n) coefficient m a t r i x  
af ter  t ransformat ion ,  can always t r ans form ~ into a diagonal  ma t r i x  so: 
f rom Eq.  (23) we have  

K V ~ B ~ = S V ~ B o* e~ 

r ight  mul t ip ly ing b y  B ~ gives 

K V ~ = S V ~ 1 7 6  (25) 
w h e r e  

s ~ = B ~ e~ B ~ . 

The solution of e igenequat ion (25) is similar to  the  solution of  e igenequat ion 
[~o:: 0 ] 

(2). i.e., first go is expanded  into V = [  Vo i V"], and  to into ,~ ~ , -x- : : -~,  , so 
I_u~e  J 



Non Self-Consistent Field Theory 53 

tha t  
K V = S V e  

and 
K ' W = S ' W e =  W e  (26) 

where 
W =  A -1 Vor  V =  d W (27) 

and 
K' = d r K A .  (28) 

Therefore V can be obtained from Eq. (27) after the eigenvector matrix W has 
been obtained from the diagonalization of K'  according to Eq. (26). But since the 
eigenvalue matr ix  ~ is not equal to the individual orbital energy matrix g ,  the 
sorting of the energy levels and their corresponding orbitals must  be carried out 
by  means of a new sorting programme which is given in the following section. 
Assume tha t  V can be partitioned into V = [ V ~ i Vu] then the density matrix carl 
be expressed in terms of V o as below: 

R o = C  oC or= V o B  o r B  o V o r  V o V or (29) 

Besides the invariant property of the density matr ix  under the unitary trans- 
formation (24), it is well known [7] that  the single determinant is also invariant, 
i.e., 

4 '  = ~5 det~(Bo) 

where Cb' is the single determinant constructed from C o whereas ~b is constructed 
from V ~ 

However, although the C ~ and R ~ are initially exactly the same as those of 
ROOT~A~'S method, the minimization of e causes the difference from the minimi- 
zation of ground state energy. The differences will be examined in subsequent 
calculations. 

After the density matr ix  has been obtained, the molecular orbitMs and their 
corresponding eigenvalues can be calculated by  one of the following methods: 

Method I [8] 

c = [co c~] = s - ' ; ,  Q = s-';~ [Qo j Q~] 
and 

E =  C f F C  

where Q is the eigenvector matr ix  of ~ = S 1/, R ~ S G  i.e. 

...... o . . . . ]  QteQ=P=[ 00m-nJ 
whereQ ~ corresponds to eigenvalnes In, whfleQ u corresponds to Om-n. In  is a unit 
matr ix  of order n, Om-n is a (m-n) order null matrix, and 0 is a null matr ix  whose 
order is self evident. 

Method I I  

From the density matr ix  R ~ = g o Fot which we obtained from the K matrix,  
a Hamiltonian matr ix  F which is defined by  R ~ can be constructed, and the molec- 
ular orbitals C and their corresponding eigenenergies E can be solved directly 
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from the eigenequation F C = S C E.  The above eigenequation can be solved 
easily either by orthonormalization of the basis set such as LSWDIN'S method [6] 
following by a diagonalization of the real symmetric matrix or by the so-called 
CHOLnSKY method [9]. 

M e t h o d  I I I  

While C o = V o B  or and C u = V u B  u? are true, B ~ and B u cannot be calculated 
from 

C o t F C  o = E  o or B o ( g  o T F V  o) B o t = E  o 

and 

C u t F C  u = E  u or Bu(V u t F V  u) B u t = E  u 

as demonstrated in the appendix. 
However, the following approximation 

C" = V B = [V  o V u] [B2iB, j 

converged to the solution of method II .  
Thus it appears that  

B 2, B a ~ 0 

so that  
Ctt ----- [ V~ + VuB2 i V~ -}- VuBd] = [ V~176 V~B~ 

= [ c o  i c , , ]  = c .  

Therefore after R o = Vol, 'or is calculated, the eigenvcctors and eigenvalues 
can be solved from 

F C t' = S O "  E 

where 

i .e. ,from 

C" = [ V  o Vu] B 

B t ( V  t F V) B = E ,  

where B is a unitary matrix and is the eigenvector matrix of the diagonalization 
of (Vt F V). 

III .  Comparison of Previous and new Methods of the Eigenvalue Problem 

( A  ) P r e v i o u s  M e t h o d s  

The general ROOTHAAN-L6wDIN [1, 4] scheme is used as the typical example. 
In  fact, all the other semiempirical or empirical methods such as the Pople- 
Pariser-Parr method or the Extended Itfickel method are special cases of this 
general method. The procedure of calculation can be briefly summarized as below: 

I. Guess C ~ where C o is the m • n coefficient matrix containing all the ~, 
occupied molecular orbitMs as its columns. From C o calculate R o = CoC ot and 
F(R~ 

2. Orthonormalize ~ into ~f' to get the A matrix. 
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3. Calculate I v' from Eq. (i3) and diagonalize it to get the unitary eigenmatrix 
C '  and diagonal E. Then C = .4 C '  can be obtained. 

4. Sort the energy levels of E and their corresponding order of columns in G. 
The n lowest energy levels are assigned as occupied molecular orbitals. 

5. When G ~ has been sorted out from (7, then the new R ~ and thus the new IV' 
can be calculated. 

6. Diagonalize the new 
consistency is reached. 

1 v'. Repeat  the iteration procedure until the self- 

(B )  The New Method 

The calculation procedure of the non-SCF theory can be summarized as below: 
I. Orthonormalize 5 p into 5 z '  to get the d matrix. 
2. From .4 calculate K(A) and then K' .  
3. Diagonalize K '  to get the unitary eigenmatrix W according to Eq. (26). 

Then V = A W can be obtained. 
4. A sorting program as briefly described below is then used to sort the energy 

levels in E and their corresponding columns in F so tha t  V can be partit ioned into 
v = [ go v , q .  

5. The density matr ix  R o and the energy sum of individual occupied molecular 
orbitals or the ground state energy Tr[Ro(2H + G)] are by  products of the sorting 
programme. 

6. After R o is obtained, the eigenveetors and eigenvalues can be solved from 
either one of the three methods proposed above. 

(C) Comparison o/the Two Methods 

I. In  previous methods, one orthonormalization of the basic set, and one 
diagonalization of IV' for empirical methods such as the extended I-Ifickel method 
were required and additionally one diagonalization for diagonalizing the new IV' 
from every additional iteration, for semiempirical methods such as the Pople- 
Pariser-Parr method [8] and theoretical methods such as ROOTgAA~'S method [1]. 
The number of sortings of the energy levels, and their corresponding eigenvectors, 
is equal to the number of diagonalizations of IV'. In  the new method, only one 
orthonormalization of the basic set, two diagonalizations and two sorting proce- 
dures to sort the occupied and unoccupied molecular orbitals are required no 
mat te r  if it is applied to semiempirical, or theoretical methods. Much computer 
t ime is therefore saved. The difficulty in choosing the initial C ~ is also avoided. 

2. The new method is a direct solution of the eigenequation, whereas the earlier 
methods were iterative approximations, except the empirical method. The price 
of removing the iterative procedure in the empirical method is the necessity of 
guessing crude approximations to the I-Iamiltonian matrix. I t  is now possible to 
remove completely the iterative procedure without appeal to the use of empirical 
parameters  to approximate the I-Iamiltonian matrix. 

(D)  Sorting Procedure 

In  the non-SCF theory, partitioning V into [ V o i Vu] is an important  step in 
obtaining the correct R o, and thus the correct occupied molecular orbitals. I t  is 
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therefore necessary to develop a sorting procedure so tha t  the n occupied eigen- 
vectors G o can be constructed from a suitable choice of n columns of lz. The 
criterion of this sorting procedure is either to use the energy sum of individual 
occupied molecular orbitals Tr Eo = Tr(RO~),  or the ground state energy s = 
= Tr  Re  f ,  where f = 2 H  + G. 

The sorting procedure can be summarized as below: 
i. Consider [V 1 V ~ . . .  Vn-1] V n " - V m ,  with the bracket containing the 

(n-t)  columns initially assumed to be par t  of V o. Compare the energy values 
= Tr[V~176 (2H §  of the (m - n § i) combinations which are constructed 

from the (n -- 1) columns in the bracket  and one each of the columns from Vn to 
lZm in turn. I f  one of these combinations Vi(n ~ i < m) has the lowest energy 
value s, this V~ will be assigned to V~, and V1 exchanged into Vi. 

2. Consider the new [V~ V~ "." Vn-1] Vn " "  Vm, and find another 
Vi(n <_ i < m) whose combination possess the lowest s among all the (m - n § t) 
combinations. This t ime Vi is assigned to be V2, and V~ is exchanged into V~. 

3. Repetition of the exchanging procedure, each time produces one column of 
V o. Therefore, after n times, the n columns of lzo can be assigned. 

4. After lz o is obtained, R o = Vo Izor is also obtained; and the final lowest 
value is the ground state energy of the system of method I.  

IV. Illustrative Examples 

One would expect tha t  the minimization of s instead of the minimization of 
ground state energy would produce different values of R o despite tha t  the e and 
R o are originally those in ROOT~AA_W'S SCF method. I t  is therefore necessary to 
examine the non-SCF theory by  comparing the results of some practical calcula- 
tions with the results of SCF theory. In  this paper  trans- and eis-butadiene are 
calculated by  SCF method and the three non-SCF methods as reported in this 
text.  In  these test  cases, only the ~ electrons are considered. 

The cis- and trans-isomerie forms of 1,3-butadiene have been reported by  
Asro~r et al. [12]. The geometry of the carbon skeletons C a -  C o -  C c -  Ca 
according to S C H O M ~  and PAULING [13] is: skeleton planar, C a -  C b -  Cc 
and Cb -- Cc -- Ca angles 124o, Ca - Cb and Cc -- Ca distances 1.35 -~, Cb -- Cc 
distance 1.46 A. 

The purpose of the calculation is to compare the results of the SCF theory and 
the non-SCF theory, therefore only the ground state and the lowest mono-exeited 
states are considered, and no configuration interaction is considered. Furthermore,  
since the general atomic orbitals arc used to construct the initial C o, no symmetl ie  
restriction has been used to construct the symmetric orbitals before the calcula- 
tion, only a 4 • 4 secular equation is being solved rather than  two 2 • 2 secular 
equations. The construction of the Hamiltonian is based on the Go]~rr~T-MAu 
and SKLAI~ approach [ld] with the hydrogen atoms neglected: 

w h e r e  
4 

H,~ = w ~  - ~ [<~:~> + < ~  I~>] 
2=1 
~tr 
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and Wpp is the energy of a 2p-electron in a carbon atom in its tetravalent valence 
state. All the required numerical values of the above integrals have been reported 
by PARR and MULL[KEN [15], using the formulas of CRAWgORD and 1)~R [16]. 

In  the SCF calculation, tIiickel's molecular orbitals are chosen as the initial 
C o. The quantity which is used for testing the self-consistency is due to MECKL~R 
[17]: 

Tr(R o' -- Ro)~ 

where R o is the input density matrix and R o' is the output density matrix. 
In the non-SCF calculation, the K matrix is defined by 

4 4 

I~i~ = E E A;r A,~r [2 </~v ]}W> -- <#a Ib,} ]  

where A~r is the matrix element of S -~&. 
In the calculation of excitation energies, configurations of mono-exeited states 

belonging to the same symmetry have not been mixed. The energy differences 
between ground state and singlet or triplet mono-exci~ed states are calculated 
from 

E ( N  ~ V~i) = E (V t t )  - EN =: s$ --  si --  J I j  + K i i  
and 

E(IV -+ T~j) = g( Til) - EN = sj -- e~ -- Jij 

where st is i-th orbital energy, and J~l, K t l  are the "Coulomb" and "Exchange" 
integrals respectively. 

The oscillator strength / and transition moment eQ of a specified excitation are 
defined by  [18] 

/ = 8.75164 • J0-~wQ ~ 

where eo = transition frequency in unit of eV, while the transition moment is 
given by  

Q~. = Q~ + Q$ +Q~ 

with 

where i is the algebraic sum of the i's for the two electrons. 
The ionization potential and the electron affinity are given by  [1, 19, 20], 

respectively, 

I = - ~ -- - I r 1 6 2  d ~  
, )  

and 

The bond lengths l~ab are calculated according to COULSO~'S formula [21]: 

8 - d  
R ~ b  = S - -  

:1 + 0.506 (1 - Pab)/P~ 

where s is the natural bond length of single bond, d is the natural bond length of 
double bond, and Pab is the mobile bond order defined by  

2 

P ~ o  = 2JZ v ~  c o ~ .  
i = 1  
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Table 1. Comparison o / ~ N D O  Results o/Trans-butadiene~ 

Non-SCF Methods SCF Method Obs. 

I II III 

EN = E~ + E~ -70 . t484 -85.3819 -85.38t9 -85.5270 
s i -- -11.7188 -11.7t88 -10.3781 
e2 = -  I - -  - 8.9301 - 8.9301 - 7.0342 -9 .0  ~ 
s 3  = -  A - -  - 2.2953 - 2.2953 - 1.395t 
s 4 - -  0.t807 0A807 2.0442 
R ~  i.4538 t.3678 1.3678 1.3715 1.34 d 
R~c t .5251 1.5060 1.5060 1.4727 t .48 ~ 
f i n  -+ Vi4) - -  0.3725 0.3725 0.3t94 
](N -~ V.23) - -  t . t574 1.t574 t.3157 0.53~ 
A E ( N  -* V~a ) - -  6.4001 6.4001 5.9375 6.0~ 
A E ( N  -* V~a ) - -  6.8034 6.8043 6.3683 7.2~ 
E~(cis)-  Ex(trans) 0.5101 0.3356 0.3356 0.1133 ~0A 

Energies and lengths have units eV and/~  respectively. 
b E~ is electronic energy while En is the nuclear energy. 
o See: P~Ie~, W. C., and A. D. WALSlt: Prom Roy. Soe. (London) A174, 220 (1940) 
d See: A L ~ E ~ G S X ,  A., 0. BASTIA~SE~, and M. TRASTTEBE~G: Aeta Chem. Scand. 12, 

i221 (1958). 
e See: iV[ULLIKE~, R. S. : l~evs, rood. Physics 14, 265 (1942). 

See: MoSV.R, C. M.: J. chem. Soc. 1954, 3455. 
See: AsTor, J. C., and G. SZASZ: J. chem. Physics 14, 67 (1946). 

Table 2. Comparison of NNDO Results of Cis.butadiene 

Non-SCF Methods 

I II III 

SCF Method 

Ex  = E~ + E ,  -69.6383 -85.0463 -85.0463 -85.4t37 
e 1 - -  - i i . 4 9 8 6  - t i . 4 9 8 6  -10.4318 
s~ - -  - 8.3723 - 8.3723 - 6.9379 
83 - -  - 1.92t0 - L9210 - 1.3176 
s~ - -  0.5446 0.5446 2.1211 
/ ~  1.4416 1.3688 1.3688 t.3709 
R~c t.5220 t.5169 1.5169 1.4757 
l (X-~  V~) - -  0.0080 0.0080 0.0020 
/ (~T ~ V23 ) - -  0.4816 0.4817 0.6259 
](N--> V~3 ) - -  0.3751 0.3751 0.3876 
/(N -~ V~a) - -  0.4006 0.4005 0.3491 
A E ( N  --> V2a ) - -  5.8583 5.8583 5.6689 
A E ( N  ~ V24) - -  6.7509 6.7507 6.4393 

T h e  c a l c u l a t e d  ~ D O  (no n e g l e c t  o f  d i f f e r en t i a l  ove r l ap )  r e s u l t s  a re  s u m m a -  

r i z e d  in  Tabs .  { a n d  2. Al l  t h e  n o n - S C F  m e t h o d s  g ive  n e a r l y  t h e  s a m e  or  b e t t e r  

r e s u l t s  t h a n  t h e  S C F  m e t h o d ,  e x c e p t  m e t h o d  I .  

V. Val id i ty  of Ze ro  D i f f e r en t i a l  Over lap  in  Non-SCF T h e o r y  

T h e  a s s u m p t i o n  o f  zero  d i f f e r en t i a l  o v e r l a p  (ZDO) b y  PoPL~ a n d  PA~IS]~R a n d  

t ) A ~  c a n  be  e x p r e s s e d  as 
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<v[H core]#> # 0 i f v = / ~ _  i 

<v [H c~ I/z> = 0 i fv  = # +_ n, n > t (30) 

I t  has been shova~ tha t  the above assumptions are reasonable if  or thonormalized 
atomic orbitals (0AO) [22] are used, [23]; Then  the ZDO assumpt ion  can be 

expressed as 

v,/t ~ 1  
m 

<v' lHeors]# '>=ZA~, ,A~ , , ,<v[Hcore[#>#O i f r  + i (31) 
v,t.t= l 

m 

<r y A.,A,..,<vlH~o~I,t>=O i fv '=#'  +n ,n> l 
v~=l 

W~ 

<r l h'~'> = E A~, A~, A~, A~, <~ I Z~> ~,., ~,~, 
/*,v,~,~ = 1  

where v', #' ,  h' and  ~' are OAO's while v, #, h and  ~ are ordinary  AO's, and  .4 is the 

mat r ix  as defined in Eq. (~0). 
Since there is no point  in using the ZDO assumpt ion  if  all the @# ] h~} integrals 

are known,  and  since the purpose of this section is s imply to compare the results 

of SCF theory  and  non-SCF theory,  the  assumpt ion 

<v# [ ha> = <vv ],~h} gg 6~,~ (32) 

will be used in  which <v# [ha> is the only integral  required in  the K matr ix ,  and  

the mat r ix  elements of K then  become 

K~. = -- Ta~ <aa [hh> (33) 

(zr 
I n  fact, 

<r [zo'> = <r162 I h'z>~,,,., ~,~, (34) 

Table 3. Comparison o] KNDO Results o/ Trans-butadiene 

Non-SC~' Methods SCF Method Obs. 
I II III 

E~v = E~ + E~ -50.5496 
~1 

S 3 ~ - A  

s t 
R~b t.3777 
R~o 1.4710 
/(N -~ V14) 
/(N-~ V~s) 
AE(N -> V2a) 
AE(N --,'- V2~ ) 
Elv(cis)-EN(trans) 0.2037 

-t04.0560 -104.0560 -104.0560 
- 21.856t - 21.856i - 21.5472 
- 14.9243 - 14.9243 - 14.5143 -9.0 
- t.6351 - i.6351 - 1.0317 

9.2748 9.2748 10.0086 
1.3729 1.3729 t.3729 1.34 
t.4650 1.4650 1.4651 t.48 
0.7545 0.7545 0.7652 
3A871 3.1870 3.2290 0.53 

13.6796 t3.6795 13.8672 6.0 
21.4578 2i.4578 21.7941 7.2 

- 0A612 - 0A612 - 0A627 ~0A 
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Table 4. Comparison o/KNDO Results o] Cis-butadiene 

Non-SCF Methods 

I II III 

SCF Method 

E~ = E~ + E ,  -50.3459 -104.2172 -104.2172 - 104.2187 
81 - -  - 2L9826 - 21.9826 - 21.7349 
8~ - -  - 14.8367 - 14.8367 - t4.5799 
83 - -  - t.5588 - 1.5588 - 1A915 
Q - -  9.8271 9.827t 10.4103 
/~a~ 1.3756 t.3718 1.3718 1.3719 
Rb~ 1.4723 1.4696 1.4696 t.4693 
](N ~ VI~) - -  0.0130 0.0130 0.0133 
/(N ~ V2a) - -  t.5444 1.5444 L5605 
](N -~ V2a) - -  1.1517 t.t517 t.t593 
/(N--+ V~a) - -  0.9316 0.9316 0.9455 
AE(N ~ V~3 ) - -  t3.3312 13.3312 13.4600 
vE(N --+ V2~) - -  21.8927 21.8927 22.1704 

should  be used  in s t ead  of  Eq.  (32) in the  actual calculation, and  all  the  2 and  a in 
Eq.  (33) should  be rep laced  b y  2' and  a '  respect ive ly .  

Similar ly ,  in the  t e s t  cases, only  the  a s sumpt ion  of  Eq.  (32) is used in the  SCF 
ca lcula t ion  r a the r  t h a n  using the  whole set of  ZDO assumpt ions  of  Eq.  (3i).  

The ca lcu la ted  K N D O  ( K  m a t r i x  neglect  the  different ia l  over lap)  resul ts  are 
summar i zed  in Tabs .  3 a n d  4. A l though  the  resul ts  are  no t  good because (32) was 
used  ins t ead  of  (34), the  resul ts  of  non-SCF me thods  are  nea r ly  the  same as those  
of  SCF m e t h o d  excep t  in m e t h o d  I ,  therefore  i t  can be expec ted  t h a t  i f  the  ZDO 
as sumpt ion  is app l icab le  to  the  SCF method ,  i t  is also appl icab le  to  the  non-SCF 
method ,  p rov ided  t h a t  o r thonormal i zed  basis  orbi ta ls  are used. 

VI. Discussion 

F r o m  the  ca lcu la ted  resul ts  i t  can be seen t h a t  the  non-SCF me thods  I I  and  
I I I  give nea r ly  the  same g round  s t a t e  energy as the  SCF method ,  and produce  
more reasonable  o rb i t a l  energies. The o ther  phys ica l  p roper t ies  a n d  spec t ra l  
quant i t i es  are  all  in  reasonable  ranges  as well as the  SCF method .  However ,  non- 
SCF m e t h o d  I gives worse results ,  poss ib ly  because  t he  e igenvectors  in m e t h o d  I 
should  sa t i s fy  no t  on ly  the  o r t h o n o r m a l i t y  condi t ion  b u t  also the  e igenequat ion  
(2), b u t  since t7 does no t  commute  wi th  K, th is  is no t  t rue  for F o. Method  I is 
therefore  app l icab le  to  SCF m e t h o d  (such as M o W E ~ Y ' s  dens i ty  method)  only,  
a n d  should  no t  be used in the  non-SCF t h e o r y  unless we are sure t h a t  V o is also an  
e igenvector  of /7 .  

The  a d v a n t a g e  of  using the  non-SCF me thods  ins t ead  of  SCF m e t h o d  is 
obvious,  no t  only  does i t  save c o m p u t a t i o n  t ime,  b u t  i t  also avoids  the  di f f icul ty  
of  guessing the  in i t ia l  i n p u t  o rb i ta l s  which m a y  cause serious t roub le  of  conver-  
gency.  

A d i rec t  ex t en t ion  of  t he  non-SCF t h e o r y  to  the  open shell  sys tem seems qui te  
difficult ,  because the  coupled m a t r i x  in open shell t t a m i l t o n i a n  m a t r i x  cannot  be 
r e so r t ed  in to  a C- independen t  ma t r ix .  However ,  a p p r o x i m a t e  solut ion s imi lar  to  
the  closed shell  sys tem seems possible.  Since the  non-SCF me thods  are  based  on 
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the optimization of all orbitals including C o and C u, and produce better orbital 
energies, the results also agree well with the closed shell SCF theory which is based 
on the minimization of closed shell orbitals only, it is expected that  the above 
non-SCF methods may also predict well the non-closed shell states by distributing 
all the electrons in suitable orbitals. In  doing this, a more complicate sorting 
programme must be used to construct the required different density matrices of 
closed shell and non-closed shell from the V coefficient matrix. 

Finally, a few words on the application of ZDO assumption should be noted. 
Since the purely theoretical evaluation of the three and four center integrals is a 
difficult and time consuming job, no matter  if it is applied to Gaussian basis set [25] 
or Slater basis set [26], for an approximate but  practical point of view the validity 
of ZDO assumption should be noted. Although the calculated results in using ZDO 
of non-orthogonal basis set for SCF and non-SCF methods are not good, they give 
nearly the same results. I t  is therefore clear that  ff ZDO assumption is applicable 
to SCF theory, it is also applicable to non-SCF theory under the same condition. 

Appendix 

Theorem 1 

I f  C is a m • m square coefficient matrix which satisfies eigenequation (Al) 

E C  = S C E  (At) 

where S is a non-singular positive definite overlap matrix, then the density 
matrix R = C C r is the inverse of 3. 

[Proof] 

Subjecting to the symmetry orthonormalization 

C' = S ~h C 
~o transform Eq. (Ai) into 

(S -1/~ F S -q~) C' = C' E (A2) 
we have 

R = C C t = S -q~  C '  C ' t  S -~h  = S -1/~ S -1/ ,  = S -1 . 

Therefore the theorem is proved. 

Theorem 2 

I f  C is a m • m square coefficient matrix and satisfies Eq. (Al), then C also 
satisfies Eq. (A3); furthermore, the reverse is also true. 

Cr F C = E .  (A3) 

[Proof] 

Left multiply Eq. (Al) by C ~ and use the orthonormality condition C t S C = 1, 
then we obtain Eq. (A3). Therefore the condition that  C satisfies Eq. (A3) is 
proved. Now, let us left multiply Eq. (A3) by S C, we have 

S C C  t F C =  S C E .  

Since from theorem i we know S C Ct = 1 if S is non-singular, therefore we have 
also proved that  ff C satisfies Eq. (A3) then it also satisfies Eq. (Ai). 



62 T.K. LI~andM. A. WHITEHEAD: 

T h e o r e m  3 

I f  C O is a m • n rectangular coefficient matrix which represents the occupied 
MO's, then ff C ~ satisfies 

it will also satisfy Eq. (A5) 

But the reverse is not true. 

F C ~ = S C O E o (A4) 

Co* E Co = Eo  . (A5) 

[Proof] 
The proof of the first part  is the same as theorem 2. Now let us prove that  a 

coefficient matrix C o which satisfies Eq. (A5) does not necessarily satisfy Eq. (A4). 
Left multiply Eq. (A5) by S C ~ then 

or 

S C o Co* F C o = S C o E o 

S R o E G o  : S Go Eo  . 

Since from theorem l, we know 

S R =  S ( R  ~ + R u) = 1 

hence 

where 

S R  ~ = 1 - -  S R  u ~ 1 

(A6) 

R o = C o C  ~162 and R u = C u C  ur . 

Therefore Eq. (A6) is not the same as Eq. (A4). Consequently, we have proved 
that  the C O which satisfies Eq. (A5) will also satisfy Eq. (A6) but not (A4). 

The important utility of this theorem is that  if we know C O - -  V o B o, where V o 

is of the same size as C ~ and B o is a n • n unitary matrix, then the B ~ (and hence 
the C o) which is obtained from the diagonMization 

B ~ ( V  ~ F V ~ B ~ = E ~ 

is not consistent with Eq. (A4). 
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