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An Re-independent electronic repulsion matrix is constructed, replacing the Re-dependent
Hamiltonian matrix (Re is the density matrix). A non-SCF theory is developed to solve the
eigenequation without using an iterative procedure. Three methods are proposed to solve for
the eigenvectors and eigenvalues. Illustrative calculations are reported comparing the non-
SCF and SCF theories. The calculated results are as expected: the ground state energies are
nearly unchanged while the orbital energies are nearer to the experimental results. Other
physical properties and spectral quantities are also compared. It is found that the ZDO assump-
tion is applicable in the non-SCF theory if it is applicable in SCF theory.

Eine Re-unabhiingige ElektronenabstoBungsmatrix wird eingefiihrt, die die Re-abhingige
Hamiltonmatrix ersetzt (Re ist die Dichtematrix). Zur Liosung der Eigenwertgleichung ohne
iterative Prozeduren wird eine sog. Nicht-SCF-Theorie aufgestellt. An Beispielen werden die
Ergebnisse von SCEF- und Nicht-SCF-Rechnungen verglichen; dabei erweisen sich die Iinergien
des Grundzustandes als nahezu unveridndert, wihrend die Energien der Orbitale néher bei den
experimentellen Werten liegen. Die ,,zero-differential-overlap“-Naherung ist immer dann in
der neuen Theorie anwendbar, wenn sie in der SCF-Theorie anwendbar ist.

Une matrice de répulsion électronique indépendante de Re est construite, remplagant la
matrice hamiltonienne dépendant de Re (Re matrice de densité). Une théorie non SCF est
développée afin de résoudre I’équation aux valeurs propres sans itérations. Trois méthodes de
résolution du probléme aux valeurs propres sont proposées. Des caleuls illustrent la comparai-
son entre les théories SCF et non SCF. Les résultats des calculs sont comme prévus: 1'énergie
de Pétat fondamental varie peu alors que les énergies orbitales sont plus proches des résultats
expérimentaux. D’autres propriétés physiques ainsi que des grandeurs spectrales sont compa-
rées. On trouve que l'approximation du recouvrement différentiel nul est applicable dans la
théorie non SCF st elle est applicable dans la théorie SCF.

1. Introduetion

The eigenvalue problem has long been the most important topic in quantum
mechanics. In molecular calculations, RooTHAAN’S SCF-LCAO method [1] seems
t0 be the best known method. However, since the Hamiltonian matrix itself is a
function of density matrix R° (or eigenvector C¢), the successive iterations to
improve the Re and thus the Hamiltonian matrix are unavoidable in solving the
eigenequation FC¢ = § C° E°. This situation can be improved. Since individual
orbitals have no real significance, all physically relevant information being ob-
tained by summation over all occupied orbitals, McWEENY was able to use the
so-called density matrix method [2] without successively solving the eigenequa-
tion. In his method, the density matrix, which determines the behaviour of a
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system without depending on the form of the individual orbitals, is iterated by
the steepest descent method, but successive iteration of the density matrix is still
unavoidable. In the present paper, a new electronic repulsion matrix, which is
Ro-independent, is introduced to replace the Ro-dependent Hamiltonian matrix
F(R°), so that the successive solution of the eigenequation can be completely
avoided. The construction of this new Re-independent matrix is based on the
following arguments:

1. In the variation method, it is well known that, in the LCAO approximation,
the more and more basis atomic orbitals used, the lower the energy can be ob-
tained. In other words, the more dummy virtual molecular orbitals introduced,
the greater the accuracy achieved. (Note that if there is a 2% electron system of n
doubly occupied orbitals with m basis atomic orbitals, then the eigenequation
always gives m eigenvectors and (m—n) of them are unoccupied dummy orbitals.)
Therefore, the dummy unoccupied MO’s seem to be important in the variation
method.

2. If we define € as those n molecular orbitals with lowest energies, and C% as
those (m-n) orbitals of higher energios, then although the virtual MO’s C* do not
contain an electron, every electron can arbitrarily be put into any MO, no matter
whether it is a C? or a C¥. Consequently, all the energy levels could be minimized
but not necessarily restricted to those of lowest energy levels only, provided that
all C% are regarded as dummy orbitals when physically relevant quantities are
considered.

3. The introduction of these dummy orbitals C* does not change the original
occupied molecular state. Furthermore, the Re-independent matrix K is obtained

m
from the minimization of ¢ = > &, where the & are orbital energies. Such a mini-
=1
mization is simply a procedure of optimization of all the orbitals C° and C¥* but
not a minimization of a new molecular state with all its m orbitals being occupied.
This point can easily be found from the difference between ¢ and the energy of such
a new molecular state.

II. Theory

Let us express the n occupied one electron molecular orbitals by the row
matrix ¢ = ($.¢,... §), and the non-orthogonal basis atomic orbitals by the
row matrix & = (%S *++ Lm), m > n. Then the LCAO expression of the
MO’s can be shown by

¢=C (1)
where C° is the m x n coefficient matrix. Then RooTEAAN’S SCF method solves
the eigenequation

FCo=SCoE° (2)
where
S=S"F F=STfS=H+G. (3)

H is the nuclear field matrix whileG is the electronic repulsion matrix; and fis the
one electron Hamiltonian operator such that

Fip = Hyy o 3 R [2 o | o) — (o | 29)] 4)
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where
Ho= | 720 (- 1vi- 32) 2,0 2ot
o Q
v | Ao) = J FE1) F(1) ri FE2) Fo(2) do(1) dv(2)
and

”
0 __ o (Yo*
‘R/’lo' — z OM C i
=1

fof

is the matrix element of the density matrix
Ro = Co Cot . (5)

Since F is a R°-dependent matrix, a self-consistent process as shown in the
following diagram has to be used to solve the eigenequation (2):

guess G° — R° — F(R°) —C° .
S

However, the R° dependent matrix F can be replaced by a new Re-independent
interelectronic repulsion matrix K so that the successive iterative process is
avoided. In order to derive the Re-independent matrix K, the row matrix ¢
should be extended to have the same length as &, i.e., besides the n occupied
MO’s, ¢ should also consist of the (m-m) virtual unoccupied MO’s. In fact,
Roornaan’s SCI' method always produces (m-n) dummy orbitals [7]. Conse-
quently,

$=5C (6)

with
C=[C°{C¥] (7)
where C% is the m X (m-n) coefficient matrix for the (m-n) virtual unoccupied

MO’s. And C is now a m X m square coefficient matrix. The eigenequation then
becomes

FC=SCE (8)
where F and § have already been defined in Eq. (3), and
0!
E= EO (9)
0 E“

where the superscripts o and u designate “ocoupied” and “virtual unoccupied”
respectively. These notations will be used throught this paper.
Now, the condition of orthonormalization requires that:

S =S4,C=432C (10)
or

S =S"41,C=4C (11)
where 4 is a m X m non-singular matrix; it can be an upper triangular matrix [3]
(Gram-Schmidt orthogonalization process), a $—'z matrix [4] (Symmetric ortho-
gonalization process), or a matrix product ¥ D~ where ¥ and D are eigenvector
matrix and eigenvalue matrix of § respectively [§] (Canonical orthogonalization
process). Left multiplication of the eigenequation (8) by A4’ then gives

A"FAA4'C=A"SAA'CE
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or
FC=S8SCE (12)
where
F=A'FA=97f% (13)
and
S'=AtS§A=91"9"=1,,. (14)

It should be noted that C' is a square coefficient matrix of the orthonormal basic
set, and is a unifary matrix such that

ccCct=cCctc =1, (15)
and matrix elements of F’ are given by

Fpo= Hy + 3 R, (2 (4] $1) (& 45) | As) — (4] SN o | UF 4s))]
Ao

CH, 1S S Ay A% B [2 v | A6y — o | )] (16)

v Ao
where 4, is the rt% column of 4 matrix; A, o, 4 and v denote non-orthonormal basis
atomic orbitals whereas 7, s, ¢ and % denote orthonormal basis atomic orbitals,
and H,, = Al H 4,, where H is the nuclear field matrix of the non-orthonormal
basis atomic orbitals.

It is equally valid if all the #; and &, involved are replaced by &; and &,
and also R, be replaced by R}, which is defined in terms of the coefficients of the
orthonormalized basis set instead of the coefficients of the non-orthonormal basis
set.

Left multiplying Eq. (12) by C’f gives

C'F C =E. (17)
With the aid of Eq. (15), the energy sum of the individual one electron molecular
orbitals can then be obtained directly from above equations:

e=Tr{E}=Tr{C't F C}=Tr{F C C*}=Tr{F}
=Tr{d'H 4} + g: > 2> Ap Ak R (2 uv | Aoy — {uo | D] (18)

r=1 uy Ao

=Tr{4" H 4} + Tr {R° K},
where the matrix elements of K are defined by

Ko = S 24} SN(F Ay | d0d — (A} SN o | A (L 4r]
= 3 T2 {uy | Aoy — o | )] (19)

uy

with
m
Tpp= 2 Ay A, (20)
r=1

Sinee the introduction of the virtual molecular orbitals does not change the
nuclear field matrix H and the electronic repulsion matrix G(R?), and since every
electron can arbitrarily be put into any one molecular orbital, no matter whether
it is C° or G%, we could require that all the energy levels are to be minimized not
only those of lowest energy levels. Therefore, the minimization of ¢ is equally
valid as the minimization of the ground state energy Tr [RO(2H + G)].

4%
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It should be emphasized that since the C% are only dummy orbitals, their
introduction does not change the original occupied molecular state. Furthermore,
the minimization of ¢ is just a procedure for optimizing all the orbital energies of
C° and C*%. This is not the minimization of a new molecular state with all its m
orbitals occupied ; such a molecular state would have the energy

m m
2 > Z OfiosiHsr‘!‘ 2 Z Oin;jOriom[2<le”>—<P3]7”Q>]

=1 18 1.j=1180.4

if all G0 and C¥ are doubly occupied, or

m m
2 2 OfCuHy+ 35 3 Cx0%5CrCOplipg|rs) — {ps|rg]

=1 7.8 6j= 11,824

if all C° and C¥ are singly occupied and all the electrons have the same spin. It is
obvious that above energies are different from e, where & can also be expressed as

n m k(3
&= _Zl 2 CiCuly+ 3 3 3 0% 05 Ori Cpp [2 {pg | 8> — <ps | rg)].

i=1 j=118,p4

If the variation method in Lagrange multiplier form [6] is applied to mini-
mize the energy sum & subject to the orthonormality condition

CtsCo=1, (21)
then
de aTr [(Cot S Co—1,) €3] _0
a0 9 0o 7
1=1,2...n
<p= 1,2...m> (22)

and it follows that
(KC°)pi — (§C° &3)pi =0

where &} is the Lagrange multiplier matrix and &3 = 2&?. Therefore, the following
new eigenequation is derived:

KCo=5Cr¢j. (23)
Although &} is not diagonal, a unitary transformation
Co = P° Bot or Vo = Co B° (24)

where B¢ is an # x » unitary matrix and V? is the new (m x n) coefficient matrix
after transformation, can always transform &3 into a diagonal matrix £9;
from Eq. (23) we have
K Vo Bot = § Vo Bot &8

right multiplying by Be gives

KVe=SVego (25)
where

g°= Bot gy B .

The solution of eigenequation (25) is similar to the solution of eigenequation

, °i 0
(2). i.e., first Vo is expanded into V' =[ Vo V%], and &° into & = [i}u] , 80
K3
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that
KV=8Ve¢
and
KW=SWe=We (26)
where
W=A4A Vo V=AW (27)
and
K =4tKA4. (28)

Therefore ¥ can be obtained from Eq. (27) after the eigenvector matrix W has
been obtained from the diagonalization of K’ according to Eq. (26). But since the
eigenvalue matrix & is not equal to the individual orbital energy matrix E, the
sorting of the energy levels and their corresponding orbitals must be carried out
by means of a new sorting programme which is given in the following section.
Assume that ¥ can be partitioned into ¥ = [F?| P*] then the density matrix can
be expressed in terms of V? as below: '

Ro —= Co Cot = Vo Bot Bo pot — o pot | (29)

Besides the invariant property of the density matrix under the unitary trans-
formation (24), it is well known [7] that the single determinant is also invariant,
ie.,

D' = @ det?(Bo)
where @' is the single determinant constructed from €¢ whereas @ is constructed
from Vo,

However, although the C¢ and Re¢ are initially exactly the same as those of
RooTraaN’s method, the minimization of ¢ causes the difference from the minimi-
zation of ground state energy. The differences will be examined in subsequent
calculations.

After the density matrix has been obtained, the molecular orbitals and their
corresponding eigenvalues can be calculated by one of the following methods:

Method I [8]
C=[C°|C* =57 Q=5""[Q" Q"]

and
E=C'FC
where Q is the eigenvector matrix of @ = §'2 Ro §'zi.e.
1,; 0
T =P=|" .
Q'eQ l 0 Om_n}

where Q¢ corresponds to eigenvalues 1,, while Q¥ corresponds to 0—4. 14 is a unit
matrix of order n, 0y is a (m-n) order null matrix, and 0 is a null matrix whose
order is self evident.

Method I1

From the density matrix R° = V¢ Vol which we obtained from the K matrix,
a Hamiltonian matrix F which is defined by R° can be constructed, and the molec-
ular orbitals C and their corresponding eigenenergies E can be solved directly
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from the eigenequation FC = 8§ C E. The above eigenequation can be solved
easily either by orthonormalization of the basis set such as Lowpin’s method [£]
following by a diagonalization of the real symmetric matrix or by the so-called
Crovresky method [9].

Method 111

While C° = PoRo! and C* = V#Bu' are true, B and B% cannot be calculated
from
Ct FC°=E° or B (Ve' F Vo) Bot = Ee
and
Cut FC% = E% or B%(Vu' F yv)Bvl = Eu
as demonstrated in the appendix.
However, the following approximation

. 1
C'—=VB=[V V“][

converged to the solution of method II.

Thus it appears that

B, B3=0
so that
C" = [V°B' + VuB?| V°B® + V¢B*] = [V°Bof VuBot]
= [C? Cvl=C.

Therefore after R0 = VoVol is calculated, the eigenvectors and eigenvalues

can be solved from
FC'=SC'E
where
C’'=[Vo V“] B
i.e., from
BY VI FV)B=E,

where B is a unitary matrix and is the eigenvector matrix of the diagonalization
of (VT F V).

III. Comparison of Previous and new Methods of the Eigenvalue Problem
(A) Previous Methods

The general RooTHAAN-LOWDIN [1, 4] scheme is used as the typical example.
In fact, all the other semiempirical or empirical methods such as the Pople-
Pariser-Parr method or the Extended Hiickel method are special cases of this
general method. The procedure of calculation can be briefly summarized as below:

1. Guess C°, where C° is the m x n coefficient matrix containing all the =
occupied molecular orbitals as its columns. From C¢ calculate R? = CeCot and
F(Ro).

2. Orthonormalize % into &’ to get the A matrix.
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3. Calculate F’ from Eq. (13) and diagonalize it to get the unitary eigenmatrix
C’ and diagonal E. Then C = 4 C’ can be obtained.

4. Sort the energy levels of E and their corresponding order of columns in C.
The » lowest energy levels are assigned as occupied molecular orbitals.

5. When C° has been sorted out from C, then the new R0 and thus the new F’
can be calculated.

6. Diagonalize the new F’. Repeat the iteration procedure until the self-
consistency is reached.

(B) The New Method

The calculation procedure of the non-SCF theory can be summarized as below:

1. Orthonormalize & into &’ to get the 4 matrix.

2. From A4 calculate K(4) and then K'.

3. Diagonalize K’ to get the unitary eigenmatrix W according to Eq. (26).
Then V= A4 W can be obtained.

4. A sorting program as briefly described below is then used. to sort the energy
levels in E and their corresponding columns in ¥ so that V can be partitioned into
V=[Vo|pul.

5. The density matrix R° and the energy sum of individual occupied molecular
orbitals or the ground state energy Tr[R°(2H + G)] are by products of the sorting
programme.

6. After R is obtained, the eigenvectors and eigenvalues can be solved from
either one of the three methods proposed above.

(C) Comparison of the Two Methods

1. In previous methods, one orthonormalization of the basic set, and one
diagonalization of F’ for empirical methods such as the extended Hiickel method
were required and additionally one diagonalization for diagonalizing the new F'
from every additional iteration, for semiempirical methods such as the Pople-
Pariger-Parr method [§] and theoretical methods such as RoorrAAN’S method [7].
The number of sortings of the energy levels, and their corresponding eigenvectors,
is equal to the number of diagonalizations of F’. In the new method, only one
orthonormalization of the basic set, two diagonalizations and two sorting proce-
dures to sort the occupied and unoccupied molecular orbitals are required no
matter if it is applied to semiempirical, or theoretical methods. Much computer
time is therefore saved. The difficulty in choosing the initial €? is also avoided.

2. The new method is a direct solution of the eigenequation, whereas the earlier
methods were iterative approximations, except the empirical method. The price
of removing the iterative procedure in the empirical method is the necessity of
guessing crude approximations to the Hamiltonian matrix. It is now possible to
remove completely the iterative procedure without appeal to the use of empirical
parameters to approximate the Hamiltonian matrix.

(D) Sorting Procedure

In the non-SCF theory, partitioning ¥ into [ P° V] is an important step in
obtaining the correct Ro, and thus the correct occupied molecular orbitals. It is
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therefore necessary to develop a sorting procedure so that the n occupied eigen-
vectors G° can be constructed from a suitable choice of n columns of V. The
criterion of this sorting procedure is either to use the energy sum of individual
occupied molecular orbitals Tr E° = Tr(R°F), or the ground state energy & =
= Tr Rof, where f = 2H +G.

The sorting procedure can be summarized as below:

1. Consider [V, Vy -+ Vyy] Vy -+ Vi, with the bracket containing the
(n-1) columns initially assumed to be part of Vo, Compare the energy values
¢ = Tr[VoVo! (2H +G)] of the (m — n + 1) combinations which are constructed
from the (n — 1) columns in the bracket and one each of the columns from ¥, to
Vm in turn. If one of these combinations Vi(n < 4 < m) has the lowest energy
value g, this V; will be assigned to ¥, and ¥V, exchanged into V.

2. Consider the mew [V, Vy:-+Vuuq]Vy---Vm, and find another
Vi(n < 4 < m) whose combination possess the lowest & among all the (m — n - 1)
combinations. This time V; is assigned to be ¥,, and ¥, is exchanged into ¥;.

3. Repetition of the exchanging procedure, each time produces one column of
Vo. Therefore, after » times, the n columns of V¢ can be assigned.

4. After V? is obtained, Re = PoPot is also obtained; and the final lowest ¢
value is the ground state energy of the system of method 1.

IV. Illustrative Examples

One would expect that the minimization of ¢ instead of the minimization of
ground state energy would produce different values of Re despite that the ¢ and
Ro are originally those in RoorEaAN’s SCF method. It is therefore necessary to
examine the non-SCF theory by comparing the results of some practical calcula-
tions with the results of SCF theory. In this paper trans- and cis-butadiene are
calculated by SCF method and the three non-SCF methods as reported in this
text. In these test cases, only the x electrons are considered.

The cis- and trans-isomeric forms of 1,3-butadiene have been reported by
Astox et al. [12]. The geometry of the carbon skeletons C, — Cp — C, — Cy
according to ScHOMAKER and Paviiwg [13] is: skeleton planar, C, — Cp — C,
and Cp — C, — Cy4 angles 1240, Cp — Cp and C, — Cg4 distances 1.35 A, O — C,
distance 1.46 A.

The purpose of the calculation is to compare the results of the SCF theory and
the non-SCF theory, therefore only the ground state and the lowest mono-excited
states are considered, and no configuration interaction is considered. Furthermore,
since the general atomic orbitals are used to construct the initial CG°, no symmetric
restriction has been used to construct the symmetric orbitals before the calcula-
tion, only a 4 x 4 secular equation is being solved rather than two 2 x 2 secular
equations. The construction of the Hamiltonian is based on the GoEPPERT-MAYER
and SKLAR approach [74] with the hydrogen atoms neglected:

Fp=Hy + ZZ R3 [2 v | Ao) — (uo | )]
where ,

4
Hyy = Wap —121 [A:pry + v | AAD]
l:v
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and W,y is the energy of a 2p-electron in a carbon atom in its tetravalent valence
state. All the required numerical values of the above integrals have been reported
by Pargr and MULLIkEN [15], using the formulas of CRawFORD and PArR [16].

Tn the SCF calculation, Hiickel’s molecular orbitals are chosen as the initial
C¢. The quantity which is used for testing the self-consistency is due to MECKLER
[17:

Tr(R° — Ro)?
where R is the input density matrix and R’ is the output density matrix.
In the non-SCF calculation, the K matrix is defined by

4 4
Kio=3 3 A A (2 | 30> — (o | )]

r=1lupy=1
where 4,y is the matrix element of .

In the calculation of excitation energies, configurations of mono-excited states
belonging to the same symmetry have not been mixed. The energy differences
between ground state and singlet or triplet mono-excited states are calculated
from

E(N - Vf[j) = E(V{j) — By = & — & — Ji]' -+ quj
and
EN —-Ty)=E(Ty) — Ex=1¢— & — Jy
where g; is ¢-th orbital energy, and Jy;, Ky are the “Coulomb” and “Exchange”
integrals respectively.

The oscillator strength f and transition moment e@) of a specified excitation are

defined by [18]
f=8.75164 x 102w Q*

where w = transition frequency in unit of eV, while the transition moment is
given by
. Q=0+ @) +¢;
with
Q= [0Fidrdr (i =2,y.2)
where 7 is the algebraic sum of the i’s for the two electrons.

The ionization potential and the electron affinity are given by [1, 19, 20],
respectively,

I=—¢g= *j‘¢2f¢2df
and
A=—e=— [duf godr.
The bond lengths R, are calculated according to CouLson’s formula [217:

s—d
1+0.5006 (1 — Pav)/Pas

where s is the natural bond length of single bond, d is the natural bond length of
double bond, and Py is the mobile bond order defined by

2
Pppy =2} Ogi Ci -
i1

Ryp =8
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Table 1. Comparison of NNDO Results of Trans-butadienes

Non-SCF Methods SCF Method Obs.
I II oI

Ex = E. + B}, ~70.1484 —85.3819 —85.3819 —85.5270
£ — —11.7188 —11.7188 —-10.3781
g=—1 — — 8.9301 — 89301 — 7.0342 —9.0¢
gg=—-4 — ~ 2.2953 — 2.2953 - 1.3951
& — 0.1807 0.1807 2.0442
Bap 1.4538 1.3678 1.3678 1.3715 1.348
By 1.5251 1.5080 1.5060 1.4727 1.48¢
N — Vi) — 0.3725 0.3725 0.3194
N — V) — 1.1574 14574 1.3157 0.53¢
AE(N — V,y) —— 6.4001 6.4001 - 59375 6.0t
AB(N — V,,) — 6.8034 6.8043 6.3683 7.2t
Ex(cis)— En(trans)  0.5101 0.3356 0.3356 0.1133 ~0.12

= Energies and lengths have units eV and A respectively.

b F. is electronic energy while £, is the nuclear energy.

¢ See: Prior, W. C., and A. D. WawLsa: Proc. Roy. Soc. (London) A174, 220 (1940)

a4 See: ALMENNINGEN, A., O. BASTIANSEN, and M. TRAETTEBERG: Acta Chem. Scand. 12,

1221 (1958).

e See: MuLLIKEN, R. S.: Revs. mod. Physics 14, 265 (1942).

t See: Moser, C. M.: J. chem. Soc. 1954, 3455.

£ See: Astow, J. C., and G. Szasz: J. chem. Physics 14, 67 (1946).

Table 2. Comparison of NNDO Resulis of Cis-butadiene
Non-SCF Methods SCF Method
I II IIT

Ey =E:+ E» —69.6383 —85.0463 —85.0463 —-85.4137
& — —11.4986 —11.4986 —10.4318
& — — 8.3723 - 8.3723 — 6.9379
& — - 1.9210 - 1.9210 - 1.3176
& — 0.5446 0.5446 2.1211
Bay 1.4416 1.3688 1.3688 1.3709
Ry, 1.5220 1.5169 1.5169 1.4757
(N = V) — 0.0080 0.0080 0.0020
N — V) — 0.4816 0.4817 0.6259
FN — V) — 0.3751 0.3751 0.3876
NV - TVy,) —_ 0.4006 0.4005 0.3491
AB(N — V) — 5.8583 5.8583 5.6639
AB(N — V) — 6.7509 6.7507 6.4393

The calculated NNDO (no neglect of differential overlap) results are summa-
rized in Tabs. 1 and 2. All the non-SCF methods give nearly the same or better
results than the SCF method, except method I.

V. Validity of Zero Differential Overlap in Non-SCF Theory

The assumption of zero differential overlap (ZDO) by PorLe and PARISER and
Parr can be expressed as
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<V]/‘>:6/w
v | Heore|uy 0 ifv=pt1
(v | Heore |y =0  ifyv=ptnn>1 (30)

Cvp | Aoy = (v | A0 by 0o -
It has been shown that the above assumptions are reasonable if orthonormalized

atomic orbitals (OAOQ) [22] are used, [23]; Then the ZDO assumption can be
expressed as

m
<IV’ IM’> = Z 1AW’ AI«W’ <’V I,u> = 61;/”/

vu=

| Heore | 'y = 3 Ay Ay v | Hoore |y 0 iy =p' + 1 (31)
1

o=

m
' Heore |y = 3 Ay Ay (v | HEore [y =0 ify" =p' t0,n>1

vu=1
m
<v'u' I 2’0”> = ; .A.lm,l AHM’ AM/ 4455/ <’VlbL l ZO‘> 5,,,,u 5110-/
B YA,0=

where ', u’, A’ and o’ are OAQ’s while v, u, 4 and ¢ are ordinary AO’s, and 4 is the
matrix as defined in Eq. (10).

Since there is no point in using the ZDO assumption if all the (s | Ao integrals
are known, and since the purpose of this section is simply to compare the results
of SCF theory and non-SCF theory, the assumption

Cvu | A6y = <ww | AA) 0y 020 (32)

will be used in which {vu | i) is the only integral required in the K matrix, and
the matrix elements of K then become

Ko = — T (o0 | A0y (33)
m
K; = TM<M l}.l> + 2 z TGO-<Z/IIO‘O‘> .
c=1
(o#4)
In fact,
<v',u' l AIO'I> = <’V”V, | ﬂ.,ﬂ.,>6,yrlm 61/51 (34:)
Table 3. Comparison of KNDO Results of Trans-butadiene

Non-SCF Methods SCF Method Obs.

I II 11
Exy=E. + Ex —50.5496 ~104.0560 —104.0560 —104.0560
£ — — 21.8561 — 21.8561 - 21.5472
gg = — I — — 14.9243 — 14.9243 - 14.5143 -9.0
gg=—A — — 1.6351 - 1.6351 - 1.0317
&4 — 9.2748 9.2748 10.0086
Rap 1.3777 1.3729 1.3729 1.3729 1.34
Ry 1.4710 1.4650 1.4650 1.4651 1.48
HN = Vi) — 0.7545 0.7545 0.7652
HV = V) — 31871 3.1870 3.2290 0.53
AB(N — V) — 13.6796 13.6795 13.8672 6.0
AB(N — V) — 21.4578 21.4578 21.7941 7.2

E n(cis)-En{trans) 0.2037 - 0.1612 ~ 04612 0.1627 ~0.1
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Table 4. Comparison of KNDOQ Results of Cis-butadiene

Non-SCF Methods SCF Method

I 11 ITL
Exv=E,+ Ex —50.3459 —104.2172 —-104.2172 — 104.2187
& -— - 21.9826 — 21.9826 — 21.7349
& — — 14.8367 — 14.8367 — 14.5799
&g — — 1.5588 —  1.5588 - 11915
€ — 9.8271 9.8271 10.4103
Bav 1.3756 1.3718 1.37118 1.3719
Bye 1.4723 1.4696 1.4696 1.4693
HV = Vi) — 0.0130 0.0130 0.0133
HV — V) — 1.5444 1.5444 1.5605
H = Vo) — 14517 14517 1.1593
HN = Vi) — 0.9316 0.9316 0.9455
AB(N — V) — 13.3312 13.3312 13.4600
VE(N — V) — 21.8927 21.8927 22.1704

should be used instead of Eq. (32) in the actual calculation, and all the 4 and ¢ in
Eq. (33) should be replaced by 4’ and ¢’ respectively.

Similarly, in the test cases, only the assumption of Eq. (32) is used in the SCF
calculation rather than using the whole set of ZDO assumptions of Eq. (31).

The calculated KNDO (K matrix neglect the differential overlap) results are
summarized in Tabs. 3 and 4. Although the results are not good because (32) was
used instead of (34), the results of non-SCF methods are nearly the same as those
of SCF method except in method I, therefore it can be expected that if the ZDO
assumption is applicable to the SCF method, it is also applicable to the non-SCF
method, provided that orthonormalized basis orbitals are used.

YI. Disenssion

From the calculated results it can be seen that the non-SCF methods II and
IIT give nearly the same ground state energy as the SCF method, ard produce
more reasonable orbital energies. The other physical properties and spectral
quantities are all in reasonable ranges as well as the SCF method. However, non-
SCF method I gives worse results, possibly because the eigenvectors in method I
should satisfy not only the orthonormality condition but also the eigenequation
(2), but since F does not commute with K, this is not true for Vo. Method I is
therefore applicable to SCF method (such as MCWEENY’s density method) only,
and should not be used in the non-SCF theory unless we are sure that V7 is also an
eigenvector of F.

The advantage of using the non-SCF methods instead of SCF method is
obvious, not only does it save computation time, but it also avoids the difficulty
of guessing the initial input orbitals which may cause serious trouble of conver-
gency.

A direct extention of the non-SCF theory to the open shell system seems quite
difficult, because the coupled matrix in open shell Hamiltonian matrix cannot be
resorted into a C-independent matrix. However, approximate solution similar to
the closed shell system seems possible. Since the non-SCF methods are based on
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the optimization of all orbitals including C° and C%, and produce better orbital
energies, the results also agree well with the closed shell SCF theory which is based
on the minimization of closed shell orbitals only, it is expected. that the above
non-SCF methods may also predict well the non-closed shell states by distributing
all the electrons in suitable orbitals. In doing this, a more complicate sorting
programme must be used to construet the required different density matrices of
closed shell and non-closed shell from the ¥ coefficient matrix.

Finally, a few words on the application of ZDO assumption should be noted.
Since the purely theoretical evaluation of the three and four center integrals is a
difficult and time consuming job, no matter if it is applied to Gaussian basis set [25]
or Slater basis set [26], for an approximate but practical point of view the validity
of ZDO assumption should be noted. Although the caleulated results in using ZDO
of non-orthogonal basis set for SCF and non-SCF methods are not good, they give
nearly the same results. It is therefore clear that if ZDO assumption is applicable
to SCF theory, it is also applicable to non-SCF theory under the same condition.

Appendix
Theorem 1
If Cis a m x m square coefficient matrix which satisfies eigenequation (A1)
FC=SCE (A1)

where § is a non-singular positive definite overlap matrix, then the density
matrix R = C C' is the inverse of S.

[Proof]
Subjecting to the symmetry orthonormalization
C=S8:C
to transform Eq. (A1) into
($-: FS§7':)C'=C'E (A2)

we have
R=CCl'=8":C C18§ =8 §"h =81,

Therefore the theorem is proved.

Theorem 2

1f Cis a m X m square coefficient matrix and satisfies Eq. (A1), then C also
satisfies Eq. (A3); furthermore, the reverse is also true.

CtFC=E. (A3)
[Proof]

Left multiply Eq. (A1) by €' and use the orthonormality condition Cf S C =1,
then we obtain Eq. (A3). Therefore the condition that C satisfies Eq. (A3) is
proved. Now, let us left multiply Eq. (A3) by S C, we have

SCC'FC=SCE.

Since from theorem 1 we know § C Ct = 1 if § is non-singular, therefore we have
also proved that if C satisfies Eq. (A3) then it also satisfies Eq. (A1).
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Theorem 3

If Co is a m x n rectangular coefficient matrix which represents the occupied
MO’s, then if C° satisfies

FCo=S8SCe E° (A4)
it will also satisfy Eq. (A5)
Co' FCo=Eo. (A5)
But the reverse is not true. '
[Proof]

The proof of the first part is the same as theorem 2. Now let us prove that a
coefficient matrix C° which satisfies Eq. (A5) does not necessarily satisfy Eq. (A4).
Left multiply Eq. (A5) by 8§ C° then

SCeCt FCo = SCe E°
or

SR FCo=SCoE°. (A8)
Since from theorem 1, we know

SR=S(Ro+ R¥)=1
hence
SRo=1—SRv+#1
where
R° = C° C°t and R% — C» Cut .

Therefore Eq. (A6) is not the same as Eq. (A4). Consequently, we have proved
that the C° which satisfies Fq. (A5) will also satisfy Eq. (A6) but not (A4).

The important utility of this theorem is that if we know C° = V° Bo, where P
is of the same size as C?, and B? is a # X # unitary matrix, then the B° (and hence
the C°) which is obtained from the diagonalization

Bot (Vo F Vo) Be = E°
is not consistent with Eq. (A4).

References

[1] RoorraaN, C. C. J.: Revs. mod. Physics 23, 69 (1951); 82, 179 (1960).
[2] McWzENY, R.: Proc. Roy. Soc. (London) A235, 496 (1956); A241, 239 (1957);
— Physic. Review 114, 1528 (1959).
[3] “Survey of numerical analysis”. Edited by Joun Topp. New York: MeGraw-Hill Book
Company, Inc. 1962.
[4] Lowpin, P. O.: J. chem. Physics 18, 365 (1950).
[5] — J. Applied Physics 8§33, 251 (1962).
[6] Liv, T. K., and M. A. WHITEHEAD: Submitted to J. chem. Physics.
[7]1 Focx, V.: Z. Physik 61, 126 (1930).
[8] Lim, T. K., and M. A. WEITEHEAD : Theoret. chim. Acta. 7, 1 (1967).
[9] MarTIN, R. 8., G. PETERS and J. H. WiLkINsoN: Numerische Mathematik 7, 362 (1965).
[10] Horsmans, R.: J. chem. Physics 89, 1397 (1963); 40, 2047, 2474, 2480, 2745 (1964).



Non Self-Consistent Field Theory 63

[11] PorLE, J. A.: Proc. Roy. Soc. (London) A202, 323 (1950);
— Trans. Faraday Soc. 49, 1375 (1953);
— Proc. Phys. Soc. (London) A118, 81 (1955);
PARISER, R., and R. G. Parr: J. chem. Physics 21, 466 (1953); 21, 767 (1953);
Pargr, R. G.: J. chem. Physics 20, 1499 (1952);
ParisERr, R.: 21, 568 (1953).

[12] Aston, J. C., and G. Szasz: J. chem. Physics 14, 67 (1946).

[13] ScHOMAKER, V., and L. PavrinG: J. Amer. Chem. Soc. 61, 1769 (1939).

[14] GoEPPERT-MAYER, M., and A. L. SkraR: J. chem. Physics 6, 645 (1938).

[15] PaRr, R. G., and R. 8. MULLIREN: J. chem. Physics 18, 1338 (1950).

[16]1 CrawFoORD, Jr., B. L., and R. G. Parr: J. chem. Physics 17, 726 (1949).

[17] MECRLER, A.: Solid State and Molecular Theory Group, MIT, Quart. Prog. Rept. 14, 36
(1955).

[18] MULLIKEN, R. S.: J. chem. Physics 7, 121 (1939).

(191 — J. Chim. Physique 46, 497 (1949) — see 1947—48 ONR Report of University of
Chicago Physics Department Spectroscopic Laboratory for English version.

[20] Husm, N. S., and J. A. PorrE: Trans. Faraday Soc. 51, 600 (1955).

[2171 CouLson, C. A.: Proc. Roy. Soc. (London) A169, 413 (1939).

[22] SuaTER, J. C.: J. chem. Physics 19, 220 (1951).

[23] Lowpix, P. O.: Svenk. Kem. Tidskr. 67, 380 (1955);

McWzENY, R.: Proc. Roy. Soc. (London) A277, 288 (1955);
Harr, G. G.: Trans. Faraday Soc. 50, 773 (1954);
PrrADEJORDIL, F.: Compt. Rend. 243, 276 (1956).

[24] BERTHIER, G., J. BAUDET, and M. SuarD: In: Status of quantum chemistry in the inter-
pretation of organic chemical phenomena. Tetrahedron Symposia, p.1. London:
Pergamon 1961.

[25] Boxs, S. F.: Proc. Roy. Soc. (London) A200, 542 (1950);

Browng, J. C., and R. D. Posausta: J. chem. Physics 36, 1933 (1962).

[26] Harris, F. E., and H. H. MicHELS: J. chem. Physics 45, 116 (1966);

BarNeTT, M. P.: In: Methods in computational physics. ALDER, B., S. FERNBACH, and
M. RoTENBERG, Eds. Vol. 2. New York: Academic Press Inc. 1963.

Prof. Dr. M. A, WHITEHEEAD
Theoret. Chemistry Laboratory
Chemistry Departement
MecGill University

Montréal 2, Quebec, Canada



